Crop Profile for Barley in Oregon

Prepared November, 2000

General Production Information

- Oregon ranks seventh nationally in barley production.
- Oregon growers produce over 2% of U.S. barley.
- In 1999, Oregon farmers harvested 134,131 acres of barley.
- Total production costs for irrigated barley in south central Oregon were $399.53 per acre in 1995. Dry-land barley cost about $170 per acre for fall-seeded crops and less for spring-seeded crops. Reliable numbers for no-till options are not available.
- Feed-type barley accounted for over 90% of Oregon’s 1997 barley crop; malting barley comprised less than 10% of the harvest.

Production Regions

Although growers plant about 3,000 acres of barley west of the Cascade Mountains, the major ranches for both feed and malting barley are in eastern Oregon. Klamath County had the most harvested acres in 1999 (28,000) followed by Sherman, Umatilla, Gilliam, Wasco, and Wallowa Counties (3).

Cultural Practices

Barley plants are annual grasses that may be planted either in the fall (for exposure to winter cold) or spring. Stems vary from 1 to 4 feet in length (7).

Ranchers can grow barley in areas with short growing seasons. It is less susceptible to frost than early wheat and usually has a higher yield and brings a higher price than oats. Wind erosion can be a problem on some soils (8).
About 37% of Oregon barley is irrigated (9).

‘Steptoe’ varieties are the most commonly-planted feed barleys in Oregon, accounting for over 46% of the 1997 crop. Most 'Steptoe' barley is spring planted. Other popular varieties are ‘Gallatin,’ ‘Gus,’ and ‘Baronesse.’ The most commonly-grown malting variety is ‘Morex,’ planted on 8.5% of the acres (6).

Insect Pests

An Idaho report lists aphids, cereal leaf beetles, thrips, and wireworms as the most commonly encountered barley pests (10).

Wheat stem maggots have caused severe damage to Klamath Basin spring barley. In areas that have cool, wet springs, wireworms may attack barley, causing a great amount of damage. Aphids are important vectors of yellow dwarf virus disease. The Russian wheat aphid can cause damage that results in whole fields being lost if growers do not detect and control infestations early (11).

Chemical controls

In 1994, Oregon ranchers treated for Russian wheat aphid and granary weevils (12).

<table>
<thead>
<tr>
<th>Insecticide</th>
<th>Brand name</th>
<th>Area treated (%)</th>
<th>Number of applications</th>
<th>Pounds per acre per application</th>
<th>Pounds per acre per crop year</th>
<th>Total application (by 1,000 lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>chlorpyrifos-methyl</td>
<td>Reldan</td>
<td>50-60</td>
<td></td>
<td></td>
<td></td>
<td>1.4</td>
</tr>
<tr>
<td>disulfoton</td>
<td>Di-Syston</td>
<td>2-15</td>
<td></td>
<td></td>
<td></td>
<td>2.3</td>
</tr>
</tbody>
</table>

For more details on insect control in Oregon small grain, go to http://ag.ippc.orst.edu/pnw/insects for the Pacific Northwest Insect Control Handbook, pre-release version 0.80 (18).

Cultural controls
Wireworms may not be a problem in fields where potatoes were grown recently without any damage (11).

Biological controls

Predators are important for aphid control. Syrphid fly larvae and ladybird beetle larvae are common predators of value (11).

Weeds

Five weeds cause the most problems for barley ranchers: cheatgrass, downy brome, jointed goatgrass, wild oats, volunteer crops, and Russian thistle (13, 19).

Chemical controls

According to a 1992 report, Oregon barley ranchers applied the following herbicides (14):

<table>
<thead>
<tr>
<th>Herbicide</th>
<th>Brand name</th>
<th>Area treated (%)</th>
<th>Number of applications</th>
<th>Pounds per acre per application</th>
<th>Pounds per acre per crop year</th>
<th>Total application (by 1,000 lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-D</td>
<td>2,4-D</td>
<td>41</td>
<td></td>
<td>0.75</td>
<td></td>
<td>57.4</td>
</tr>
<tr>
<td>bromoxynil</td>
<td>Buctril</td>
<td>8</td>
<td></td>
<td>0.22</td>
<td></td>
<td>3.3</td>
</tr>
<tr>
<td>chlorsulfuron</td>
<td>Glean</td>
<td>7</td>
<td></td>
<td>0.01</td>
<td></td>
<td>0.1</td>
</tr>
<tr>
<td>dicamba</td>
<td>Banvel</td>
<td>24</td>
<td></td>
<td>0.10</td>
<td></td>
<td>4.5</td>
</tr>
<tr>
<td>diclofop</td>
<td>Kelthane</td>
<td>4</td>
<td></td>
<td>0.89</td>
<td></td>
<td>6.6</td>
</tr>
<tr>
<td>diuron</td>
<td>Karmex</td>
<td>2</td>
<td></td>
<td>1.50</td>
<td></td>
<td>5.6</td>
</tr>
<tr>
<td>glyphosate</td>
<td>Roundup</td>
<td>4</td>
<td></td>
<td>0.50</td>
<td></td>
<td>3.7</td>
</tr>
<tr>
<td>MCPA</td>
<td>Rhomene</td>
<td>13</td>
<td></td>
<td>0.67</td>
<td></td>
<td>16.2</td>
</tr>
<tr>
<td>metribuzin</td>
<td>Lexone</td>
<td>2</td>
<td></td>
<td>0.33</td>
<td></td>
<td>1.2</td>
</tr>
</tbody>
</table>

Diseases

Some diseases found in barley are rust, smut, stripe, dwarf, scald, blotch, powdery mildew, scab, root and foot rot, eyespot, and chaff (15).

Chemical controls

Oregon ranchers applied the following fungicides in 1994, some as seed treatments (12):

<table>
<thead>
<tr>
<th>Fungicide</th>
<th>Brand name</th>
<th>Area treated (%)</th>
<th>Number of applications</th>
<th>Pounds per acre per application</th>
<th>Pounds per acre per crop year</th>
<th>Total application (by 1,000 lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>carboxin</td>
<td>Vitavax</td>
<td>54-95</td>
<td></td>
<td></td>
<td></td>
<td>3.8</td>
</tr>
<tr>
<td>difenoconazole</td>
<td>Dividend</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td>0.4</td>
</tr>
<tr>
<td>thiram</td>
<td>Thiram</td>
<td>54-95</td>
<td></td>
<td></td>
<td></td>
<td>3.8</td>
</tr>
</tbody>
</table>

The Pacific Northwest Handbook list these as effective fungicides: imazalil (Nu-Zone, Flo Pro IMZ), carboxin + thiram (RTU-Vitavax-Thiram), tebuconazole + thiram (Raxil-Thiram), triadimenol (Baytan), propiconazole (Tilt), mfenoxam (Apron XL LS), captan, and mancozeb (Manzate) (16)

Cultural controls

Barley diseases can be minimized with some cultural controls (17).

- Use pathogen-free seed
- Use resistant varieties
- Plant in late fall or early spring
- Soak seed in hot water
- Rotate crops. Avoid planting cereal or grass crops in less than 2-year rotation
- Destroy old stubble by deep plowing or burning
- Destroy volunteer barley of other infected grass species
- Seed when soil conditions favor rapid germination and emergence
- Practice tillage that accelerates breakdown of residues

Nematodes

Cereal cyst nematodes can reduce yields by 20 to 70% depending on the degree of infestation and how often cereal crops are planted in the rotation. The eggs may survive several years in the soil. Root-knot nematodes are a problem only in western Oregon (17).

Chemical controls

Soil fumigation is too expensive for barley, but it can be used on a more valuable rotation crop such as potato (17).

Cultural controls

Nematode controls include (17):

- Crop rotation
- Fall or winter plants; crops more tolerant of nematode damage
- Avoid planting in infected fields
- Reduce plant stress from soil compaction and low pH

Other

Go to http://pestdata.ncsu.edu/cropprofiles/start.html for the Idaho and Utah barley crop profiles.
Contacts

Mylen Bohle
Crook County Extension
498 SE Lynn Blvd
Prineville, OR 97754
mylen.bohle@orst.edu

Patrick Hayes
Crop and Soil Science
Oregon State University
Corvallis, OR 97331
hayesp@css.orst.edu

Mark Hodges
Oregon Wheat Commission
1200 NW Naito Parkway, Suite 520
Portland, OR 97209-2800
mhodgesowc@uswest.net

Kerry Locke
Klamath County Extension
3328 Vandenburg Road
Klamath Falls, OR 97603-3796
kerry.locke@orst.edu

Sandy Macnab
Sherman and Wasco County Extension
P.O. Box 385
Moro, OR 97039
sandy.macnab@orst.edu

References

5. Enterprise Budget, Spring Barley, South Central Region; EM 8591; Oregon State University Extension Service: Corvallis, OR, April 1995.

8. Local small grain production, Klamath Experiment Station. hppt://www.orst.edu/dept/kes/g-prod.htm (accessed July 1999).

19. Macnab, S., Sherman and Wasco County Extension, Moro, OR. Personal communication, August 11, 2000.

Acknowledgements

This crop profile was prepared by P. Thomson, W. Parrott, and J. Jenkins, Agricultural Chemistry Extension, Department of Environmental and Molecular Toxicology, Oregon State University. S. Macnab, Sherman and Wasco County Extension, reviewed the information.